Feature Sampling Based Unsupervised Semantic Clustering for Real Web Multi-View Content

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Content Based Web Sampling

Web characterization methods have been studied for many years. Most of these methods focus on textbased web contents. Some of them analyze the contents of a web page by analyzing its HTML code, hyper links, and/or DOM 1 structure. Seldom, a web page is characterized based on its visual appearance. A good reason for also considering the visual appearance of a web page is because humans initially...

متن کامل

Unsupervised Feature Selection for Multi-View Data in Social Media

The explosive popularity of social media produces mountains of high-dimensional data and the nature of social media also determines that its data is often unlabelled, noisy and partial, presenting new challenges to feature selection. Social media data can be represented by heterogeneous feature spaces in the form of multiple views. In general, multiple views can be complementary and, when used ...

متن کامل

Unsupervised Distributed Feature Selection for Multi-view Object Recognition

Object recognition accuracy can be improved when information from multiple views is integrated, but information in each view can often be highly redundant. We consider the problem of distributed object recognition or indexing from multiple cameras, where the computational power available at each camera sensor is limited and communication between sensors is prohibitively expensive. In this scena...

متن کامل

Adaptive Unsupervised Multi-view Feature Selection for Visual Concept Recognition

To reveal and leverage the correlated and complemental information between different views, a great amount of multi-view learning algorithms have been proposed in recent years. However, unsupervised feature selection in multiview learning is still a challenge due to lack of data labels that could be utilized to select the discriminative features. Moreover, most of the traditional feature select...

متن کامل

Weighted Multi-view Clustering with Feature Selection

In recent years, combining multiple sources or views of datasets for data clustering has been a popular practice for improving clustering accuracy. As different views are different representations of the same set of instances, we can simultaneously use information from multiple views to improve the clustering results generated by the limited information from a single view. Previous studies main...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.3301102